236 research outputs found

    Optimized local modes for lattice dynamical applications

    Full text link
    We present a new scheme for the construction of highly localized lattice Wannier functions. The approach is based on a heuristic criterion for localization and takes the symmetry constraints into account from the start. We compare the local modes thus obtained with those generated by other schemes and find that they also provide a better description of the relevant vibrational subspace.Comment: 6 pages, ReVTeX, plus four postscript files for figure

    First principles calculation of uniaxial magnetic anisotropy and magnetostriction in strained CMR films

    Full text link
    We performed first - principles relativistic full-potential linearized augmented plane wave calculations for strained tetragonal ferromagnetic La(Ba)MnO3_3 with an assumed experimental structure of thin strained tetragonal La0.67_{0.67}Ca0.33_{0.33}MnO3_3 (LCMO) films grown on SrTiO3_3[001] and LaAlO3_3[001] substrates. The calculated uniaxial magnetic anisotropy energy (MAE) values, are in good quantitative agreement with experiment for LCMO films on SrTiO3_3 substrate. We also analyze the applicability of linear magnetoelastic theory for describing the stain dependence of MAE, and estimate magnetostriction coefficient λ001\lambda_{001}.Comment: Talk given at APS99 Meeting, Atlanta, 199

    Order parameter model for unstable multilane traffic flow

    Full text link
    We discuss a phenomenological approach to the description of unstable vehicle motion on multilane highways that explains in a simple way the observed sequence of the phase transitions "free flow -> synchronized motion -> jam" as well as the hysteresis in the transition "free flow synchronized motion". We introduce a new variable called order parameter that accounts for possible correlations in the vehicle motion at different lanes. So, it is principally due to the "many-body" effects in the car interaction, which enables us to regard it as an additional independent state variable of traffic flow. Basing on the latest experimental data (cond-mat/9905216) we assume that these correlations are due to a small group of "fast" drivers. Taking into account the general properties of the driver behavior we write the governing equation for the order parameter. In this context we analyze the instability of homogeneous traffic flow manifesting itself in both of the mentioned above phase transitions where, in addition, the transition "synchronized motion -> jam" also exhibits a similar hysteresis. Besides, the jam is characterized by the vehicle flows at different lanes being independent of one another. We specify a certain simplified model in order to study the general features of the car cluster self-formation under the phase transition "free flow synchronized motion". In particular, we show that the main local parameters of the developed cluster are determined by the state characteristics of vehicle motion only.Comment: REVTeX 3.1, 10 pages with 10 PostScript figure

    quasiharmonic equations of state for dynamically-stabilized soft-mode materials

    Get PDF
    We introduce a method for treating soft modes within the analytical framework of the quasiharmonic equation of state. The corresponding double-well energy-displacement relation is fitted to a functional form that is harmonic in both the low- and high-energy limits. Using density-functional calculations and statistical physics, we apply the quasiharmonic methodology to solid periclase. We predict the existence of a B1--B2 phase transition at high pressures and temperatures

    The effects of interface morphology on Schottky barrier heights: a case study on Al/GaAs(001)

    Full text link
    The problem of Fermi-level pinning at semiconductor-metal contacts is readdressed starting from first-principles calculations for Al/GaAs. We give quantitative evidence that the Schottky barrier height is very little affected by any structural distortions on the metal side---including elongations of the metal-semiconductor bond (i.e. interface strain)---whereas it strongly depends on the interface structure on the semiconductor side. A rationale for these findings is given in terms of the interface dipole generated by the ionic effective charges.Comment: 5 pages, latex file, 2 postscript figures automatically include

    Te covered Si(001): a variable surface reconstruction

    Get PDF
    At a given temperature, clean and adatom covered silicon surfaces usually exhibit well-defined reconstruction patterns. Our finite temperature ab-initio molecular dynamics calculations show that the tellurium covered Si(001) surface is an exception. Soft longitudinal modes of surface phonons due to the strongly anharmonic potential of the bridged tellurium atoms prevent the reconstruction structure from attaining any permanent, two dimensional periodic geometry. This explains why experiments attempting to find a definite model for the reconstruction have reached conflicting conclusions.Comment: 4 pages, 3 gif figure

    Systematic generation of finite-range atomic basis sets for linear-scaling calculations

    Full text link
    Basis sets of atomic orbitals are very efficient for density functional calculations but lack a systematic variational convergence. We present a variational method to optimize numerical atomic orbitals using a single parameter to control their range. The efficiency of the basis generation scheme is tested and compared with other schemes for multiple zeta basis sets. The scheme shows to be comparable in quality to other widely used schemes albeit offering better performance for linear-scaling computations

    Carbon antisite clusters in SiC: a possible pathway to the D_{II} center

    Full text link
    The photoluminescence center D_{II} is a persistent intrinsic defect which is common in all SiC polytypes. Its fingerprints are the characteristic phonon replicas in luminescence spectra. We perform ab-initio calculations of vibrational spectra for various defect complexes and find that carbon antisite clusters exhibit vibrational modes in the frequency range of the D_{II} spectrum. The clusters possess very high binding energies which guarantee their thermal stability--a known feature of the D_{II} center. The di-carbon antisite (C_{2})_{Si} (two carbon atoms sharing a silicon site) is an important building block of these clusters.Comment: RevTeX 4, 6 pages, 3 figures Changes in version 2: Section headings, footnote included in text, vibrational data now given for neutral split-interstitial, extended discussion of the [(C_2)_Si]_2 defect incl. figure Changes version 3: Correction of binding energy for 3rd and 4th carbon atom at antisite; correction of typo

    First-principles study of stability and vibrational properties of tetragonal PbTiO_3

    Full text link
    A first-principles study of the vibrational modes of PbTiO_3 in the ferroelectric tetragonal phase has been performed at all the main symmetry points of the Brillouin zone (BZ). The calculations use the local-density approximation and ultrasoft pseudopotentials with a plane-wave basis, and reproduce well the available experimental information on the modes at the Gamma point, including the LO-TO splittings. The work was motivated in part by a previously reported transition to an orthorhombic phase at low temperatures [(J. Kobayashi, Y. Uesu, and Y. Sakemi, Phys. Rev. B {\bf 28}, 3866 (1983)]. We show that a linear coupling of orthorhombic strain to one of the modes at Gamma plays a role in the discussion of the possibility of this phase transition. However, no mechanical instabilities (soft modes) are found, either at Gamma or at any of the other high-symmetry points of the BZ.Comment: 8 pages, two-column style with 3 postscript figures embedded. Uses REVTEX and epsf macros. Also available at http://www.physics.rutgers.edu/~dhv/preprints/index.html#ag_pbt

    A first-principles study of MgB2 (0001) surfaces

    Full text link
    We report self-consistent {\it ab initio} calculations of structural and electronic properties for the B- and Mg-terminated MgB2_{2} (0001) surfaces. We employ ultra-soft pseudopotentials and plane wave basis sets within the generalized gradient approximation. The surface relaxations are found to be small for both B- and Mg-terminated surfaces. For the B-terminated surface, both B σ{\sigma} and π{\pi} surface bands appear, while only one B π{\pi} surface band exists near the Fermi level for the Mg-terminated surface. The superconductivity of the MgB2_2 surfaces is discussed. The work function is predicted to be 5.95 and 4.25 eV for the B- and Mg-terminated surfaces respectively. The simulated scanning tunneling microscopy images of the surfaces are not sensitive to the sign and value of the bias voltages, but depend strongly on the tip-sample distance. An image reversal is predicted for the Mg-terminated surface.Comment: 3 pages, 4 figures, Revte
    corecore